Impact of syringaldehyde on the growth of Clostridium beijerinckii NCIMB 8052 and butanol production
نویسندگان
چکیده
While lignocellulosic biomass excels as a cheap, renewable resource for biofuel production, it does present some challenges such as generation of microbial inhibitory compounds. The mode of selective inhibition of acetone–butanol–ethanol (ABE) production (as opposed to cell growth) by syringaldehyde on Clostridium beijerinckii NCIMB 8052 was examined. C. beijerinckii 8052 grown in syringaldehyde-supplemented P2 medium had a comparable growth rate (l = 0.34) at acidogenic growth phase to that of C. beijerinckii 8052 grown in control P2 medium (l = 0.30). The addition of syringaldehyde into P2 medium inhibited solvent production by C. beijerinckii 8052 and increased butyric and acetic acid accumulation in the fermentation broth. Analysis of coenzyme A transferase (CoAT) using cell-free extracts of C. beijerinckii 8052 showed decreased expression and activity in the presence of syringaldehyde. These results indicate that C. beijerinckii 8052 CoAT is negatively affected by syringaldehyde and thus, hampers the ability of the microorganism to metabolize butyric and acetic acid for ABE production as evidenced by the accumulation of butyric and acetic acid in the fermentation broth.
منابع مشابه
Transcriptional analysis of Clostridium beijerinckii NCIMB 8052 and the hyper-butanol-producing mutant BA101 during the shift from acidogenesis to solventogenesis.
Clostridium beijerinckii is an anaerobic bacterium used for the fermentative production of acetone and butanol. The recent availability of genomic sequence information for C. beijerinckii NCIMB 8052 has allowed for an examination of gene expression during the shift from acidogenesis to solventogenesis over the time course of a batch fermentation using a ca. 500-gene set DNA microarray. The micr...
متن کاملEffect of acetate on molecular and physiological aspects of Clostridium beijerinckii NCIMB 8052 solvent production and strain degeneration.
The addition of sodium acetate to chemically defined MP2 medium was found to increase and stabilize solvent production and also increase glucose utilization by Clostridium beijerinckii NCIMB 8052. RNA and enzyme analyses indicated that coenzyme A (CoA) transferase was highly expressed and has higher activity in C. beijerinckii NCIMB 8052 grown in MP2 medium containing added sodium acetate than ...
متن کاملTranscriptional analysis of Clostridium beijerinckii NCIMB 8052 to elucidate role of furfural stress during acetone butanol ethanol fermentation
BACKGROUND Furfural is the prevalent microbial inhibitor generated during pretreatment and hydrolysis of lignocellulose biomass to monomeric sugars, but the response of acetone butanol ethanol (ABE) producing Clostridium beijerinckii NCIMB 8052 to this compound at the molecular level is unknown. To discern the effect of furfural on C. beijerinckii and to gain insight into molecular mechanisms o...
متن کاملGlucose uptake in Clostridium beijerinckii NCIMB 8052 and the solvent-hyperproducing mutant BA101.
Glucose uptake and accumulation by Clostridium beijerinckii BA101, a butanol hyperproducing mutant, were examined during various stages of growth. Glucose uptake in C. beijerinckii BA101 was repressed 20% by 2-deoxyglucose and 25% by mannose, while glucose uptake in C. beijerinckii 8052 was repressed 52 and 28% by these sugars, respectively. We confirmed the presence of a phosphoenolpyruvate (P...
متن کاملEvidence for the presence of an alternative glucose transport system in Clostridium beijerinckii NCIMB 8052 and the solvent-hyperproducing mutant BA101.
The effects of substrate analogs and energy inhibitors on glucose uptake and phosphorylation by Clostridium beijerinckii provide evidence for the operation of two uptake systems: a previously characterized phosphoenolpyruvate-dependent phosphotransferase system (PTS) and a non-PTS system probably energized by the transmembrane proton gradient. In both wild-type C. beijerinckii NCIMB 8052 and th...
متن کامل